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Abstract

We analyze simulations of present and future climates in the western U.S. performed

with four regional climate models (RCMs) nested within two global ocean-atmosphere

climate models. Our primary goal is to assess the range of regional climate responses to

increased greenhouse gases in available RCM simulations. The four RCMs used different

geographical domains, different increased greenhouse gas scenarios for future-climate

simulations, and (in some cases) different lateral boundary conditions. For simulations of

the present climate, we compare RCM results to observations and to results of the GCM

that provided lateral boundary conditions to the RCM. For future-climate (increased

greenhouse gas) simulations, we compare RCM results to each other and to results of the

driving GCMs. When results are spatially averaged over the western U.S., we find that

the results of each RCM closely follow those of the driving GCM in the same region, in

both present and future climates. In present-climate simulations, the RCMs have biases in

spatially-averaged simulated precipitation and near-surface temperature that seem to be

very close to those of the driving GCMs. In future-climate simulations, the spatially-

averaged RCM-projected responses in precipitation and near-surface temperature are also

very close to those of the respective driving GCMs. Precipitation responses predicted by

the RCMs are in many regions not statistically significant compared to interannual

variability. Where the predicted precipitation responses are statistically significant, they

are positive. The models agree that near-surface temperatures will increase, but do not

agree on the spatial pattern of this increase. The four RCMs produce very different

estimates of water content of snow in the present climate, and of the change in this water

content in response to increased greenhouse gases.
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1. Introduction

Accurate projections of future regional-scale climates are needed to assess the possible

societal impacts of climate change. These impacts may include effects on water

availability, agriculture, human health, and so on. Uncertainties in projections of

regional-scale climate change complicate the process of assessing societal impacts and of

making policy decisions to cope with climate change. Systematic studies are needed to

quantify uncertainties in regional climate changes, to identify the sources of those

uncertainties, and ultimately to reduce them.

In this paper we start evaluating uncertainties in future climate in the Western U.S. by

intercomparing simulations of this region performed with four regional climate models

(RCMs) nested within two different global climate models (GCMs). Our goals are to

assess (1) how well the different RCM/GCM combinations simulate aspects of the

present climate in this region; and (2) the inter-model range of projected regional climate

responses to increased atmospheric greenhouse gases. Because we are particularly

interested in the possible impacts of climate change on water availability, we focus on

meteorological variables relevant to this problem: near-surface temperatures,

precipitation, and water-equivalent snow depth. We emphasize that errors in the RCM

results are not necessarily due to problems in the RCM itself, but may instead reflect

errors in the GCM-based lateral boundary conditions. Thus in our analyses of present-
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climate simulations we are not evaluating the RCMs per se but rather the coupled

RCM/GCM models.

Our approach has some significant limitations. First, the RCM simulations we analyzed

use different spatial resolutions, different geographical domains, different increased

greenhouse gas scenarios for future-climate simulations, and (in some cases) different

lateral boundary conditions. Thus, this is not a formal model intercomparison study, but

rather an attempt to learn from available simulations. Several carefully-controlled

studies—the U.S. Project to Intercompare Regional Climate Simulations (PIRCS; Takle

et al., 1999); the Euopean Prediction of Regional Scenarios and Uncertainties for

Defining European Climate Change Risks and Effects (PRUDENCE; Christensen et al.

2002) project, the Canadian Climate Impacts Scenarios (CCIS, 2004) project, and the

Regional Model Intercomparison Project (RMIP, 2003) for Asia—are under way,

however. Second, it is important to avoid equating future-climate uncertainties to inter-

model differences. There are important uncertainties (notably in future greenhouse gas

levels and other climate perturbations) that are external to climate models. Also, of

course, there may be important errors common to all the models we look at. For these

reasons, inter-model differences in projected future climates may be much smaller than

actual uncertainties in future climate. I.e., the true future climate may be outside the

envelope of model projections. Finally, the approach of evaluating future-climate

uncertainties by assessing inter-model differences implicitly assumes that all models are

equally credible. In principle, models that do a better job of simulating the present

climate should give more credible projections than other models do. One attempt to
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narrow future-climate uncertainties by eliminating models that are relatively unskilled at

simulating the present climate was not successful, however (Coquard et al, 2004).

It should also be noted that RCMs cannot be expected to accurately reproduce

observations of the present climate if they are driven by boundary data which contains

significant biases. Thus the best test of the RCM dynamics and parameterized physics is

to drive the model with reanalysis (i.e. with the best possible boundary conditions). When

driving an RCM with present-climate data from a free-running global climate model, the

best one can expect from the RCM is accurate downscaling of the GCM solution (biases

and all). Also, the GCMs that provided lateral boundary conditions were free-running

models that computed ocean temperatures, salinity and circulation internally.  A further

step in the comparison would be to use boundary conditions from GCMs that simulated

present climate with prescribed, observed sea-surface temperatures (SSTs).  The analysis

here is thus one part of a broader analysis that could also include RCMs driven by

reanalyses and RCMs driven by GCMs with specified SSTs.

2. Description of models, simulations, and observations

We analyzed simulations of present and future climates performed with four different

RCMs. These RCM simulations were all driven by lateral boundary conditions from

global ocean-atmosphere general circulation models (GCMs). The simulations with the

PNNL and ECPC RCMs were both driven by results from the NCAR DOE Parallel

Climate model (PCM); however different PCM simulations were used for the PNNL vs.
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ECPC simulations. The UCLA and Iowa State simulations were both driven by the same

simulations performed with the HadCM2 GCM.

The Regional Spectral Model (RSM) was developed at the National Centers for

Environmental Prediction (NCEP; Juang and Kanamitsu, 1994; Juang et al, 1997) to

provide a physically consistent regional model for the NCEP global model. The RSM

was further modified at the Experimental Climate Prediction Center (ECPC; Roads et al.

2003) at the Scripps Institution of Oceanography, University of California, San Diego.

The version of the RSM and the regional climate simulations analyzed here were

previously described by Han and Roads (2004).

The PNNL regional climate model was developed based on the Penn State/NCAR

Mesoscale Model MM5 (Grell et al. 1994). Leung et al. (2003a) described the model

configuration and results of a 20-year simulation driven by the NCEP reanalysis. The

simulations analyzed here were driven by one PCM control simulation and an ensemble

of three PCM simulations for the future climate following a business as usual scenario

Leung et al. (2003b&2004) analyzed the hydrologic impacts of climate change in the

Columbia River Basin, Sacramento-San Joaquin Basin, and the Georgia Basin/Puget

Sound region based on the regional simulations. In this study, we analyzed only the

ensemble mean of the three PCM and regional climate simulations for the future climate

although differences are quite large among the ensemble members even when averaged

over 2040-2060.
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The Mesoscale Atmospheric Simulation (MAS) model is a limited-area atmospheric

model written on a sigma coordinate (Soong and Kim 1996). Atmospheric-land surface

interactions are computed by the Soil-Plant-Snow (SPS) model (Mahrt and Pan 1984;

Kim and Ek 1995) that is interactively coupled with the MAS. The coupled MAS-SPS

model was originally developed at the LLNL and is currently developed and used at

UCLA for regional climate and extended range forecast studies. Earlier analyses of the

regional climate change data used in this study were presented by Kim (2000), Kim et al.

(2002) and Kim (2003). In addition, performance of the MAS model used for this study

was evaluated by Kim and Lee (2003) in an 8-year hindcast study.
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Institution Regional
Model

Land Surface
Scheme

RCM
resolution

RCM
domain

Global ModelPresent-
climate
CO2 conc.

CO2 increase

UCLA MAS SPS
Kim and Ek
(1995)

36 km Western
U.S.

HadCM2 340 ppm 1.6x

ECPC RSM OSU/NCEP
Mahrt and
Pan (1984)

60 km Continental
U.S.

PCM ~350 ppm 1.36x

Iowa St. RegCM2 BATS ver 1e
Dickinson et
al. (1992)

52 km Continental
U.S.

HadCM2 340 ppm 1.8x

PNNL PNNL/
MM5
Leung et
al. 2003

OSU
Chen and
Dudhia
(2001)

40 km Western
U.S.

PCM 340 ppm 1.41x

Table 1: Properties of simulations analyzed here.

The RegCM2 (Giorgi et al. 1993a, b) simulation performed by Iowa State computed

precipitation using a simplified version (Giorgi and Shields 1999) of the Hsie et al.

(1984) explicit moisture scheme and the Grell (1993) convection parameterization.  The

model also used the BATS Version 1e (Dickinson et al. 1993) land surface model and the

Holtslag et al. (1990) nonlocal boundary-layer turbulence parameterization. Radiative

transfer used the CCM2 radiation package (Briegleb 1992). Pan et al. (2001) give further

details of the simulation and discuss general features of the precipitation output and its

change under greenhouse warming.

We evaluate these simulations by comparing them to a range of observational data

products. In general these are gridded (i.e. spatially complete) data products that have

been produced by applying physically-based spatial interpolation methods to sparse
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observations. The exception is near-surface temperature data from the Global Historical

Climatology Network (GHCN), whose station data we display after averaging onto a 0.5

deg grid.  The value we show in each 0.5 deg box is the mean of all stations within that

box; if there are no stations in the box that value is missing. Thus, no interpolation was

performed on this data. Table 2 lists salient properties of the observational data sets used

in this study.

Dataset

source

Quantities

used

Spatial

resolution

Time

resolution

Reference

VEMAP T, P 0.5 deg. monthly http://www.cgd.ucar.edu/vemap/mainpage.html

NOAA P 0.25 deg daily http://www.cdc.noaa.gov/PublicData/

GHCN T

NOHRSC SWE http://www.nohrsc.nws.gov/

UW T 0.125 deg monthly http://www.hydro.washington.edu/Lettenmaier/gridded_data/index.html

 Table 2: Observational data sets used for model evaluation. “Quantities used” lists

meteorological quantities that were used in this study; additional quantities may be

available from the same data source. T = near-surface temperature; P = precipitation;

SWE = snow water equivalent (i.e., water-equivalent snow depth). VEMAP =

Vegetation/Ecosystem Modeling and Analysis Project; NOAA = National Oceanic and

Atmospheric Administration; GHCN = Global Historical Climatology Network.

NOHRSC = National Operational Hydrologic Remote Sensing Center; UW = University

of Washington.
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3. Results

3.1 Present climate: Seasonal Means

We start by analyzing the ability of the four RCM/GCM simulations to reproduce aspects

of the present climate in the western U.S. All four simulations overestimate spatially-

averaged monthly-mean wintertime precipitation, in some months by as much as a factor

of two (Figure 1). This figure also suggests that these biases in the RCM results are due

to similar biases in the driving GCMs. (I.e., the RCMs produce too much precipitation

because too much moisture enters their domains from the GCM.) However, the ECPC

model (for example) over-predicts western U.S. precipitation when forced with lateral

boundary conditions from reanalysis (Han and Roads, 2004) ), as does RegCM2 (Pan et

al., 2001; Gutowski et al. 2004); thus the tendency to overpredict western U.S.

precipitation may be to some extent inherent in the RCMs. Although the different control

simulations have similar spatially-averaged precipitation amounts, the different RCMs

differ in how they spatially distribute wintertime precipitation (Figure 2). The too-wet

bias is also apparent in Figure 2. Of the four control simulations, the HadCM2/MAS

(UCLA) simulation has the most extreme spatial variations in wintertime precipitation; it

is also the only control simulation in which Nevada and eastern Oregon are not much too

wet.
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The impressions gained from Figure 2 are quantified in Figure 3a, a “Taylor diagram”

(Taylor, 2001) evaluating monthly-mean, spatially resolved precipitation in the RCMs

and GCMs discussed here. This diagram compares simulated spatially-resolved quantities

(in this case precipitation) to gridded observations (in this case VEMAP). Before these

comparisons are made, the model results were interpolated to the grid of the observed

data set (in this case 0.5 deg x 0.5 deg.). Caution must be taken that gridded observational

data can be biased due to uneven distribution of stations. In particular a lack of high

elevation stations in the western U.S. can cause systematic errors such as underestimation

of spatial variability and warm biases in the near-surface air temperature (Kim and Lee

2003). Two statistics are shown, both based on climatological monthly-mean values at

each location. The radial coordinate represents the standard deviation of model results

divided by the standard deviation of observed values. This compares the magnitude of

simulated spatio-temporal variability to observed variability; it confirms that for western

U.S. precipitation the UCLA model has the most variability of all models considered, and

more variability than observed precipitation. Figure 3a also shows that the RCMs have

more spatio-temporal variability in simulated western U.S. precipitation than the GCMs

do; it is typical for coarser-resolution models to have less variability. The angular

coordinate in Figure 3 is the correlation coefficient between model results and

observations; this measures the extent to which the maxima and minima in simulated

quantities occur at the correct locations and times. Figure 3a shows that RCM-simulated

precipitation correlates more strongly with observed precipitation than GCM-simulated

precipitation does. In the Taylor diagram the results of an ideal model would be plotted

on the horizontal axis at a radial coordinate value of 1; the distance on the plot from this
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“ideal point” measures the RMS error in the model results. Thus, of all the models

considered here, the PNNL model has the smallest RMS error in western U.S.

precipitation. To give a feel for the importance of observational uncertainties, in Figure

3a we plot in the same manner as the models the NOAA observational data set.

Figure 1: Seasonal cycle of present-day monthly-mean spatially-averaged precipitation in
the western U.S. Each panel also shows results from one RCM. Next to the ECPC and
PNNL RCM results are shown results from the PCM global simulations that provided
lateral boundary conditions. Different PCM simulations were used to drive the two
RCMS; thus the PCM results in the two lower panels are not identical. All panels show
results of two observational data sets, from VEMAP and NOAA. Error bars represent
interannual variability (1 std. deviation).
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Figure 2: Maps of seasonal-mean precipitation in the western U.S. for (a) DJF and (b)
JJA. In both (a) and (b) the top row shows results from four nested RCMs; the bottom
row shows observed precipitation from NOAA and VEMAP (left) and results from two
GCM simulations. Each GCM provided lateral boundary conditions to the RCM shown
immediately above.
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Figure 3: Taylor diagram evaluating simulations of precipitation (top) and near-surface
temperature (bottom) in the Western U.S. The angular coordinate is the correlation
coefficient between model results and observations (VEMAP). The radial coordinate is
the standard deviation of model results divided by the standard deviation of observations.
Before comparison to observations, model results were interpolated to the spatial grid of
the observations. Statistics were calculated based on multi-year averages of monthly
mean values at each geographical location. Results of a perfect model would be plotted
on the horizontal axis at a radial coordinate value of 1. NOAA observations of
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precipitation and temperatures from NCEP reanalysis are plotted to indicate the size of
observational uncertainties.

Figure 4: Seasonal cycle of present-day monthly-mean spatially-averaged near-surface
temperature in the western U.S. Each panel also shows results from one RCM. Next to
the ECPC and PNNL RCM results are shown results from the PCM global simulations
that provided lateral boundary conditions. All panels show results of two observationally-
derived data sets, from VEMAP and NCEP reanalysis. Error bars represent interannual
variability (1 std. deviation).

The RCM/GCM control climates also show some significant biases in spatially-averaged

monthly-mean near-surface temperatures (Figure 4). All the control climates are too cold

in late winter and spring; the HadCm2/RegCM2 (Iowa State) simulation is also too cold

in summer. These biases in the ECPC and PNNL results seem to result from similar

biases in the driving PCM simulation. Maps of annually-averaged near-surface

temperatures (Figure 5) show that all the RCMs simulate the basic spatial pattern of near-
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surface temperature quite well; this is not surprising as this pattern is strongly determined

by topographic variations. As with precipitation, the UCLA model shows the most spatial

variability of the four RCMs in near-surface temperatures. This likely results at least in

part from the higher spatial resolution used in this model compared to the other RCMs,

which allows more accurate representation of topography.

A Taylor diagram (Figure 3b) shows that simulated near-surface temperatures correlate
much more strongly with observed values than simulated precipitation does. As with
precipitation, the UCLA results have the most spatio-temporal variability of all the
simulations considered here. Figure 3b also shows that three of the RCMs have higher
correlation coefficients (relative to the VEMAP data) in near-surface temperatures than
the NCEP reanalysis does. One of these models has a smaller RMS error in near-surface
temperature than NCEP does. This no doubt results from the relatively coarse spatial
resolution of the reanalysis, which makes it unable to capture topographically-induced
variations in near-surface temperatures.
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Figure 5: Maps of seasonal-mean near-surface air temperature in the western U.S. for (a)
DJF and (b) JJA. In both (a) and (b) the top row shows results from four nested RCMs;
the bottom row shows observed near-surface temperature from GHCN and VEMAP
(left), as well as results from two GCM simulations that provided lateral boundary
conditions to the RCM shown immediately above. For this comparison the GHCN
(Global Historical Climatology Network) station data were averaged onto a 0.5 degree
latitude/longitude grid; grid locations with no station data are black.
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Figure 6: Seasonal cycle of present-day monthly-mean spatially-averaged water-
equivalent snow volume in the western U.S. Each panel also shows results from one
RCM, as well as from the NOHRSC assimilation data set. Error bars represent
interannual variability (1 std. deviation). The NOHRSC snow dataset is an assimilation
based on the model-forecasted precipitation and a snow model, and may not have the
same accuracy as observed values.
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Figure 7: Maps of present-climate western U.S. water-equivalent snow depth, or snow-
water equivalent (SWE) for March-April-May. The top row shows results from four
nested RCMs. The bottom row shows observed values (left) and values from two GCM
simulations that provided lateral boundary conditions to two of the RCMs.

Compared to data from NOHRSC, the PCM/RSM (ECPC) and PCM/MM5 (PNNL)

simulations severely underestimate water-equivalent snow depths, or snow-water

equivalent (SWE), in the western U.S. in every month except those in which there is no

observed snow (Figure 6). The other control simulations overestimate SWE in spring,

summer, autumn, and early winter. Maps of seasonal-mean SWE for MAM (Figure 7)

confirm the biases seen in the spatially-averaged SWE results. In addition, Figure 7

shows some significant apparent errors in the simulated spatial distributions of SWE. For
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example, the Iowa State model predicts too much SWE in Nevada and Eastern Oregon,

and too little SWE in the Cascade Mountains of Oregon and Washington.

The snow amounts seen in the ECPC and PNNL control simulations appear to be

inconsistent with those simulations’ biases in monthly-averaged near-surface temperature

and precipitation. Specifically, although these simulation under-predict SWE relative to

NOHRSC in every month when snow is observed, both these simulations overestimate

regionally-averaged precipitation throughout the rainy season (Figure 1), and

underestimate regionally-averaged near-surface temperatures from January onwards

(Figure 4). This suggests that these simulations should overestimate SWE, the opposite of

what we find.

To try to explain this puzzle, in Figure 8 we show scatter plots of monthly-mean near-

surface temperature biases versus monthly-mean precipitation biases. Here, the bias at

each location is defined to be the difference between monthly-mean model result and

climatological monthly-mean observed value from VEMAP. To confine the analysis to

locations where snow is on the ground, we show results only for November through

March, and only at locations where the observed NOHRSC SWE exceeds zero. (We

interpolated all results to the VEMAP grid for this analysis; thus each point on the plot

therefore corresponds to a 0.5 deg. x 0.5 deg. grid cell.) All the control simulations are

predominately biased towards being too cold and wet, which should lead to too much

SWE. For example, the median bias in near-surface temperature is -3.24 C in the ECPC

simulation and -1.70 C in the PNNL simulation; median precipitation biases are 1.00
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mm/day and 0.79 mm/day, respectively. Thus, in most locations where snow cover is

observed, these simulations are too cold and too wet. In some locations the temperature

biases in the RCM results exceed 15 C. The same scatter-plot analysis using an

alternative near-surface data temperature set obtained from the Surface Water Modeling

g r o u p  a t  t h e  U n i v e r s i t y  o f  W a s h i n g t o n

(http://www.hydro.washington.edu/Lettenmaier/gridded_data/), the development of

which is described by Maurer et al. (2002), gave very similar results (not shown).

Thus, it is not clear from the meteorology shown in Figures 1, 4, and 8 why the UCSC

and PNNL control simulations should underestimate snow amounts. One possibility is

that snow amounts may increase nonlinearly with surface elevation; if this is the case,

then in simulations such as those analyzed here where topography is under-resolved, one

would expect SWE to be underestimated. Another possibility involves daily-timescale

temperature and precipitation errors in these simulations. Specifically, our findings could

result from positive temperature errors on days with large precipitation amounts (i.e. if

the models are too warm during strong precipitation events). This has been seen in some

regions of the western U.S. in other simulations with the PNNL model (Leung et al.

2003). Without access to daily temperature and precipitation results, however, we cannot

determine if this is occurring in these RCM simulations.
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Figure 8: Scatter plots of model temperature biases versus precipitation biases. Here
biases are calculated by subtracting climatological monthly-mean observed values
obtained from VEMAP from monthly-mean model results. For this comparison the model
results were interpolated to the grid of the observations (0.5 deg. x 0.5 deg.), thus each
point corresponds to a half-degree grid cell. Only points where the observed snow cover
exceeds zero are shown.

Defects in representations of land-surface processes can also cause large snow-

accumulation biases. Leung and Qian (2003) analyzed regional climate simulations

driven by the NCEP reanalysis for the western U.S. and found a large negative bias in

snowpack. Their analysis suggested that up to 50% of the snowpack bias was related to

temperature and precipitation bias, but deficiency in the land surface model likely

accounted for a substantial part of the remaining bias. Similar results were seen in a

recent intercomparison in which twenty-one land-surface models were forced with
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observed meteorology for 18-year simulations (Slater et al., 2001). Since snowfall was

prescribed in these simulations, all intermodel differences in SWE, and, in principle, any

model biases in SWE, result from inadequacies in the land-surface models. This

intercomparison revealed large (up to factor of ~4) intermodel scatter in simulated SWE.

The models’ biases relative to observed SWE were predominately positive in some years

and negative in others. It was also found that early-season biases tended to persist

throughout the snow year. Further suspicion of defects in land surface models being a

major source of model bias is the fact that both the RSM and PNNL model used a land

surface model based on the OSU model with a single layer of snow. Clearly, the sorts of

defects in land-surface models could be an important factor in SWE biases in the RCMs

considered here.

Finally, the apparent inconsistency between the ECPC and PNNL RCMs’ biases in near-

surface temperature and precipitation and their biases in SWE could result at least in part

from the limited number of years represented in the NOHRSC snow data. Specifically,

this data set represents only 1996-2000, which may have more snow than normal in part

because of the strong El Nino in 1997-1998. A snow data set including more years might

result in smaller apparent model biases.

3.2: Present Climate: Interannual Variability

Interannual variations in climate in the western U.S. have important societal impacts.

Variations in precipitation can be particularly important, resulting in stress on water
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infrastructure, floods and mudslides. The primary source of interannual variability in this

region is the El Nino/Southern Oscillation (ENSO), which introduces variability

primarily on times scales of 4 to 7 years.

The control climates overestimate interannual variability of monthly-mean, regionally-

averaged precipitation in nearly every month (Figure 9). This is perhaps to be expected

given that the monthly mean precipitation is also too high in all the RCMs. The RCM

errors in both mean precipitation and interannual variability of monthly-mean

precipitation are largest in the winter months, when precipitation is also largest. All the

simulations successfully represent the higher interannual variability in February relative

to January and March. In January and February, the two PCM simulations differ greatly

from each other in interannual variability of precipitation; however, each RCM

nonetheless seems to closely follow its driving GCM.

Observations show relatively little seasonal cycle in interannual variability of monthly-

mean, regionally-averaged near-surface temperatures (Figure 9). The PCM model and the

RCMs driven by PCM, however, show more variability in winter than in summer and

more variability than is observed in winter. The two RCMs that were driven by HadCM2

(Iowa State and UCLA) do better at estimating winter-time variability in time-and space-

averaged near-surface temperatures.

Maps of interannual variability of seasonal-mean precipitation (Figure 10) show that

locations of high interannual variability generally coincide with locations of high
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seasonal-mean precipitation (Figure 2). The RCMs generally reproduce the observed

spatial pattern of high interannual variability over mountains in California, Oregon, and

Washington, and low variability over the dry regions in Eastern Oregon, Eastern

Washington, and Nevada. The Iowa State model, however, has not enough variability in

the mountains and too much in the dry regions. The ECPC model does not reproduce the

observed high variability over the mountains in Washington and Oregon.

Maps of interannual variability of seasonal-mean near-surface temperature (Figure 11)
show that the excessive variability seen in the ECPC model’s spatially-averaged
temperatures (Figure 9b) is due primarily to excessive variability inland (in eastern
Oregon and Washington, Idaho, and northern Nevada). This clearly results from
excessive variability in the same locations in the driving PCM
simulation.
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Figure 9: Internnual variability of monthly-mean, spatially-averaged precipitation (top)
and near-surface temperature (bottom). For each month, the standard deviation (over
years) of monthly-mean precipitation averaged over the study area is shown.
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Figure 10: Interannual variability in seasonal-mean precipitation for (a) DJF and (b) JJA.
In both (a) and (b), top row shows results from four RCMs. Bottom row shows results
from two observational data sets (NOAA and VEMAP) as well as from two GCM
simulations. Each GCM simulation provided boundary conditions to the RCM shown
immediately above it. Here, interannual variability is represented by the standard
deviation of results from 10 years of observations or simulations.
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Figure 11: Interannual variability in seasonal-mean near-surface temperature for (a) DJF
and (b) JJA. In both (a) and (b), top row shows results from four RCMs. Bottom row
shows results from two observational data sets (GHCN and VEMAP) as well as from two
GCM simulations. Each GCM simulation provided boundary conditions to the RCM
shown immediately above it. Here, interannual variability is represented by the standard
deviation of results from 10 years of observations or simulations.
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3.3 Simulated responses to increased greenhouse gases

We start by examining the simulated response of regional precipitation to increased CO2.

In the two RCMs driven by results from the PCM global model, the regionally-averaged

monthly-mean response is consistent with zero in every month (Figure 12). This reflects a

similarly insignificant regional precipitation response in the PCM results. Especially in

the PNNL results, it is striking how closely the RCM response follows that of PCM; this

similarity includes not only the multi-year average response, but also the magnitude of

interannual variability (indicated by error bars in Figure 12). The lack of a significant

precipitation response in PCM and in the RCMs driven by PCM is consistent with the

generally weak climate sensitivity of the PCM model to increased greenhouse gases

(Barnett et al., 2001), and with the relatively small CO2 increases considered in these

simulations (1.36x and 1.41x).

To avoid confusing a response to increased CO2 with interannual variability, we assessed

the statistical significance of simulated precipitation responses relative to interannual

variability at each model grid cell. This was done using a 2-sided student’s t-test. The

RCM simulations driven by results from PCM show almost no area where the simulated

precipitation response is significant at a 90% or greater confidence level (Figure 13). This

again may result from the relatively small CO2 increases used in these simulations. The

UCLA and Iowa State RCMs show statistically significant increases in precipitation in

northern California, eastern Oregon, and central Idaho. The spatial pattern of simulated
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precipitation response is quite similar in these two models, when only regions with

statistically significant responses are considered.

Figure 12: Seasonal cycle of monthly-mean spatially-averaged precipitation response to
increased CO2 in the western U.S. Each panel shows results from one RCM. Next to the
ECPC and PNNL RCM results are shown results from the PCM global simulations that
provided lateral boundary conditions. Error bars represent interannual variability (1 std.
deviation).
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Figure 13: Maps of simulated response of wintertime (DJF) precipitation in the western
U.S. to increased atmospheric CO2. Units are mm/day. The top row shows results from
four nested RCMs. The bottom row shows results from two GCM simulations that
provided lateral boundary conditions to two of the RCMs. Results are shown only in
areas where the precipitation response is significant relative to interannual variability at a
90% or greater confidence level; this is determined by applying a 2-sided student’s t-test.

Simulated responses in near-surface temperatures to increased CO2 show no significant

seasonal cycle (Figure 14). As expected, the larger CO2 increases in the UCLA and Iowa

State simulations, combined with the larger climate sensitivity of HADCM2 than PCM,

produce larger responses in near-surface temperatures. As with simulated precipitation

responses, it is striking how closely the spatially averaged response in the ECPC and

PNNL RCMs follows that in their respective driving GCM results. Maps of annual-mean
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near-surface temperature responses (Figure 15) show that the UCLA and Iowa State

models produce uniformly larger responses in near-surface temperatures.

To allow easier comparison of the spatial patterns of temperature responses across the

various models, we show in Figure 16 normalized near-surface temperature responses.

Here the simulated temperature response in each model has been multiplied by a scalar

chosen so that the spatial mean of the normalized response is one. The RCMs agree that

warming will be greater inland than near the coast, but they do not agree on details of the

pattern of temperature response. The ECPC model has a notably different pattern of

surface temperature response than the other models. This may be related to the lack of

snowpack along the coastal mountains in the RSM control and future climate simulations,

which precludes snow albedo feedback effects that play a role in the larger warming

along the coastal mountains in all other RCM simulations.
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Figure 14: Seasonal cycle of monthly-mean spatially-averaged near-surface temperature
response to increased CO2 in the western U.S. Each panel also shows results from one
RCM. Next to the ECPC and PNNL RCM results are shown results from the PCM global
simulations that provided lateral boundary conditions. Error bars represent interannual
variability (1 std. deviation).
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Figure 15: Maps of simulated response of annual-mean near-surface temperature in the
western U.S. to increased atmospheric CO2. The top row shows results from four nested
RCMs. The bottom row shows results from two GCM simulations that provided lateral
boundary conditions to two of the RCMs. Results are shown only in areas where the
temperature response is significant relative to interannual variability at a 90% or greater
confidence level; this is determined by applying a 2-sided student’s t-test.
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Figure 16: Maps of normalized response of annual-mean near-surface temperature in the
western U.S. to increased atmospheric CO2. Here, temperature response values have been
normalized such that the spatial mean in each panel is 1. This allows the spatial patterns
of temperature responses in the different models to be easily compared. The top row
shows results from four nested RCMs. The bottom row shows results from two GCM
simulations that provided lateral boundary conditions to two of the RCMs.

4. Discussion and conclusions

In order to incorporate climate change into planning processes, policymakers need

projections of climate change that include quantitative estimates of uncertainties. One

approach to producing such estimates is to compare results across a range of equally

credible models. For uncertainty estimates to be quantitatively rigorous, a carefully-

coordinated study in which all models consider the same climate change scenario, etc., is
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needed. Such studies require a major, multi-institutional effort, however, and are beyond

the scope of this paper. Here, we have instead compared available RCM simulations of

the Western U.S., a region with diverse climates and clear vulnerabilities to climate

change. This study may be viewed as one step toward the broader analysis that would

involve carefully coordinated, multi-institutional simulations and cross-comparisons.

We analyzed the ability of the four RCM/GCM combinations to reproduce observations

of the present climate, and the inter-model range of predicted responses to increased

atmospheric greenhouse gases. In simulations of the present climate, the RCM results

show significant biases; in most cases where driving GCM results are available, the RCM

biases are very similar to the biases of the driving GCM within the RCM domain. Thus,

the RCMs are doing an effective job of downscaling the GCM solutions. For example,

the PNNL and ECPC models have positive precipitation biases in winter that are very

similar to the biases in the driving PCM simulations. The UCLA and Iowa State models

also have positive precipitation biases in winter. While we did not have access to the

particular HadCM2 simulation used to drive the UCLA and Iowa State models, this bias

is very similar to that seen in other HadCM2 simulations. Although the GCM simulations

exert large control over the regional mean precipitation of the RCMs, the spatial

distribution of precipitation can vary substantially among RCMs even when driven by the

same GCM. These differences are likely dependent on model topography (with varying

degrees of spatial smoothing typically applied) and model physics. All the RCMs

analyzed here seem to have less SWE than one would expect from their biases in

precipitation and near-surface temperature. In particular, the PNNL and ECPC models
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have much less SWE than is observed, despite being too cold and having too much

precipitation in most locations in our study area.

There is little consistency among the models as to responses in precipitation and near-

surface temperatures to increased greenhouse gases. The two models driven by PCM

(PNNL and ECPC) project no significant changes in regionally-averaged monthly-mean

precipitation. Projected precipitation changes are not significant at the 90% confidence

level in any location in the study area. This may be related to the small CO2 increases

(1.41x and 1.36x, respectively) in these simulations. The two RCMs driven by HadCM2

(UCLA and Iowa State) predict increases in monthly-mean regionally-averaged

wintertime precipitation that are comparable in magnitude to the interannual variability of

the precipitation response (one standard deviation); i.e., are barely significant. These

RCMs predict precipitation increases that are significant at the 90% confidence in

northern California, eastern Oregon, and central Idaho. All the RCMs predict warming in

response to increased greenhouse gases. The models that simulated larger CO2 increases

and were driven by GCMs with larger climate sensitivity (UCLA and Iowa State) predict

greater warming. There is no significant seasonal cycle to the predicted warming in any

RCM, and the spatial patterns of predicted warming are quite different in the different

RCMs.
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